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SINGULARITY FITTING IN 
HYDRODYNAMICAL CALCULATIONS II 

by 

R.D. Richtmyer änd R.B. Lazarus 

ABSTRACT 

This is the second report in a series on the development of 
techniques for the proper handling of singularities in fluid- 
dynamical calculations; the first was called Progress Report on the 
Shock-Fitting Project. This report contains six main results: (1) 
derivation of a free-surface condition, which relates the accelera- 
tion of the surface with the gradient of the square of the sound 
speed just behind it; (2) an accurate method for the early and mid- 
dle stages of the development of a rarefaction wave, two orders of 
magnitude more accurate than a simple direct method used for 
comparison; (3) the similarity theory of the collapsing free surface, 
where it is shown that there is a two-parameter family of self- 
similar solutions for y = 3.9; (4) the similarity theory for the outgo- 
ing shock, which takes into account the entropy increase; (5) a 
"zooming" method for the study of the asymptotic behavior of 
solutions of the full initial boundary-value problem; (6) comparison 
of two methods for determining the similarity parameter 5 by zoom- 
ing, which shows that the second method is preferred. 

Future reports in the series will contain discussions of the self- 
similar solutions for this problem, and for that of the collapsing 
shock, in more detail and for the full range (1,°°) of 7; the values of 
certain integrals related to neutronic and thermonuclear rates near 
collapse; and methods for fitting shocks, contact discontinuities, 
interfaces,   and   free   surfaces   in   two-dimensional   flows. 

I. INTRODUCTION 

Shock - fitting methods were developed in Los 
Alamos in 1944 for one-dimensional problems with 
spherical symmetry, for the special case in which 
there is just one primary shock, whose position and 
velocity are known at t = 0, and which runs into 
previously undisturbed material. In spite of the 
simplifications, the method was sufficiently difficult 
for the early computers that, when the Hippo project 
was being planned, in 1948, the pseudo-viscosity 
method was invented to replace shock fitting.1 

When used with a great deal of care and a certain 
amount of good luck, the viscosity method can give 
good  results,  but is quite risky at best2 and is 

seriously lacking in spatial resolution in mul- 
tidimensional problems. It has given quite incorrrect 
results in a few cases. A small project was started 
here in 1974 to develop shock fitting further in one 
dimension and to extend it to two dimensions; Ref. 3 
is a preliminary report on that work. 

In the course of the shock-fitting studies, it 
became apparent that there are other singularities of 
flows which also ought to be treated by special 
methods, which will be called generally fitting 
methods. They include interfaces, contact discon- 
tinuities, free surfaces, rarefaction heads and tails, 
shock interactions, corners, centers of symmetric 
collapse, and the like. That has led us to the follow- 
ing working principle as a basis for study: The finite 



.difference methods ought to be used only for the 
smooth parts of the flow, where the differential 
equations are strictly valid, and all other parts ought 
to be specially treated by whatever mixture of 
analytic and numerical methods can be devised. 

One advantage of that principle is that it gives one 
a lot of freedom in the choice of the finite difference 
method to be used in each of the smooth parts into 
which the flow is divided by the singularities. (The 
freedom is made use of in the particular problem to 
which this report is devoted by the choice of special 
dependent variables suited to the development of a 
rarefaction wave.) In particular, the degree of dis- 
sipativity of the difference equations can be chosen 
to satisfy Kreiss's theorem4 rather than with any 
idea of smearing out shocks. 

Another advantage of that principle is that it 
removes the most serious disadvantage of the 
Eulerian formalism, namely the loss of precise loca- 
tion for material interfaces and other discrete sur- 
faces. 

It is recalled that one purpose of the Lax-Wendroff 
method was to fill a gap in the discussion of the 
viscosity method in Ref. 1. That discussion showed 
that the correct description of a flow with shocks is 
obtainable, at least in principle, by first letting the 
spacing Ax of the computation net tend to zero and 
then letting the viscosity coefficient, or equivalently 
the shock thickness d, tend to zero subsequently. 
That sidesteps the question of what happens if the 
limits are taken simultaneously, so that Ax and d re- 
main of the same order of magnitude, as they always 
are in practical calculations. The same question is 
unanswered in nearly all the modern versions of the 
viscosity method. 

The Lax-Wendroff method fills that gap in the 
discussion by conserving mass, momentum, and 
energy exactly, in a certain sense4 already for finite 
Ax, not merely in the limit as Ax—>0. Since the 
Rankine-Hugoniot jump conditions for a shock are 
based on the conservation laws, they also hold, in a 
sense, for finite Ax. 

Another purpose of the Lax-Wendroff method 
(possibly seen most clearly in retrospect) was to 
clear up the confusion that existed concerning the 
dissipativity of a difference scheme and the dis- 
sipative terms in such a scheme. Difference schemes 
are usually analyzed, following von Neumann, by 
first linearizing, then treating the coefficients as con- 
stants (at least in small neighborhoods), and then 
expanding the solution in a Fourier series or Fourier 
integral. The time dependence of the Fourier coef- 
ficients is then determined by the difference 
equations. If the absolute value of every Fourier coef- 
ficient remains constant in time, as is the case for 
the differential equations when similarly treated, 

the scheme is called nondissipative. For any 
reasonable difference scheme, that must be ap- 
proximately true for the long and medium 
wavelength components, but the short wavelength 
ones are often significantly damped, as t increases, 
in which case the scheme is called dissipative. 

It was formerly felt that difference methods for 
fluid dynamics ought to be nondissipative, because 
the differential equations are. However, it can be 
shown that any finite difference scheme necessarily 
falsifies the phases of the short-wave components; 
hence, it is pointless to maintain their amplitudes, 
from the viewpoint of accuracy. That it is also 
pointless to maintain their amplitudes from the 
viewpoint of the conservation laws is shown by the 
Lax-Wendroff equations, which conserve mass, 
momentum, and energy exactly, but are dissipative. 
Lastly, Kreiss's theorem shows that a suitable 
degree of dissipativity, corresponding to a given 
degree of accuracy, guarantees stability against 
variability of the coefficients, when the von 
Neumann condition is satisfied. 

When, as in the present work, difference equations 
are used only for the smooth part of the flow, the two 
main functions of the Lax-Wendroff method, conser- 
vation and dissipation, can be separated. We are in- 
terested only in the latter, hence need not require the 
equations to be in conservation-law form, but can 
apply the two-step Lax-Wendroff method of 
differencing directly to equations of the form 

3JJ 
3 t A  ^  - A  3x 

for it is known that such differencing gives the 
amount of dissipation required by Kreiss's theorem. 

II. THE     RAREFACTION     (CAVITY 
COLLAPSE) PROBLEM 

At time t = 0, a 7-law fluid is at rest under cons- 
tant pressure in the region of space outside an empty 
spherical cavity, i.e., in the region R > R0, where R is 
the Eulerian radial coordinate. See Fig. 2-1. (The 
computer code was originally planned to handle also 
the corresponding plane and cylindrical problems, 
but so far only the spherical one has been studied.) 
For 0 < t < to, where t0 is the instant of collapse of 
the cavity, there is a rarefaction wave between an in- 
ward moving free surface at R = £(t) and an outward 
moving head at R = ?/(t), where 0 < £(t) < R0, and 
where jj(t) = Ro + c0t, c0 being the sound speed in 
the initial state. For t« t0, the spherical shell £(t) < 
R < t](t) occupied by the wave is very thin, and the 
rarefaction is approximately a plane simple wave5 in 
which the sound speed c and the material speed u 
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Fig. 2-1. 
The cavity collapse program at, and shortly 
after, t = 0. 

vary linearly with R across the shell. In that stage, 
the velocity of the free surface is given approximate- 
ly by £(=d£/dt) = -2C0/(Y-1). At later times, the 
free surface accelerates inward until collapse occurs 
at t = t„ [£(to) = 01, at which time the pressure and 
density are instantaneously infinite at R = 0. For t > 
t,„ a shock front, whose position is denoted by R = 
f(t), progresses outward from the center. 

The flow has singularities as follows: 

(1) t « 0, R « Ro. At t = 0, the flow quantities are 
discontinuous across R = R0. At early times 
thereafter, there is a thin centered rarefaction wave 
in an interval [£,JJ] around R0. Although the theory 
of such waves has been well known in the plane ap- 
proximation since the time of Riemann, the wave 
has to be regarded as a singularity from the view- 
point of the finite difference equations, so long as its 
thickness is comparable with or less than the spacing 
AR of the computational net. 

(2) t > 0, R = jj(t) = Ro + c„t. At the head of the 
rarefaction wave, the first derivatives of the flow 
quantities are discontinuous. A special fitting 
technique is used; it is described in Sec. V. 

(3) 0 < t < to, R = £(t). At the free surface, a special 
boundary condition is needed in addition to fitting. 
It is described in Sec. IV. 

(4) t « to, but t < to, R « 0. The collapsing flow 
may be representable asymptotically by a self- 
similar flow of the kind described by Hunter6 — see 
also Ref. 7. This question is debated in Sec. X: 

(5) t « to, but t > to, R « 0. The outgoing shock 
may also be representable asymptotically by a self- 
similar flow. 

(6) t > to, R = f(t). Shock fitting, as described 
Ref. 3, is required at the outgoing shock. 

in 

The main computational problem, to which the 
latter part of this report is addressed, is how to turn 
the flow around, at t«t0, and get the outgoing shock 
properly started. 

III. DIFFERENCE  EQUATIONS  FOR THE 
SMOOTH PART OF THE FLOW 

At early times, owing to the approximate plane 
simple-wave character of the solution, it is natural to 
take the entropy S per unit mass, the Reimann 
variable P[=2C/(Y-1) for a 7-law gas], and the fluid 
velocity u, as the dependent variables, because those 
quantities vary linearly with R in the simple wave, 
whereas the pressure p and the density p vary with a 
higher power of the distance from the free surface 
(see Note following Eq. 3.8). The differential 
equations for S, <x, and u will next be derived from 
the Eulerian equations, which, for plane (a = l), 
cylindrical (a=2), and spherical (a=3) symmetry, 
are 

/3     „. J   \ 1 3     /„a-l      \ 
U~T + u 3-R)P = -p ^rr Hi (R     u) • 

/  3 3   \ 3p 
p [ at + u FR I u = " 3R ' 

(a) 

. (b) 

(c) 

(3.1) 

£ is the internal energy per unit mass and is related 
to p and p by an equation of state. A consequence of 
Eq. 3.1 is the entropy condition 

(A •■£)»■• 



If S is any function of S (not depending on any other 
variables),   then 

(ft + u h)% = o (3.2) 

We introduce as further thermodynamic quantity 
the Reimann variable 

■/ 
p    S=const 

a(S,p) 

For a 7-law gas, we can take 

p = p(S,p) = Spy; 

then 

a = <T(S,/0) = 2C/(T-D, 

where 

c = c(s,p) = VySp7-1   • 

(3.3) 

(3.4) 

(3.5) 

The program is to take S, a, and u as dependent 
variables, define a vector 

U = (S,p,u), (3.6) 

and derive the differential equations for S, p, u in the 
form 

aU/9t+A3U/3R = g , (3.7) 

where A is a 3X3 matrix. The first equation is 
already at hand: it is (3.2). A short calculation gives 
the system 

(ft + u h)s 

\h + u h) ° 

=  o. (3.8) 

3 u 
C   3R   "   "UC 

a-1 
R 

In the coefficient of 3S/6R_in Eq. (3.8c), the differen- 
tiations with respect to S are understood to be for 
fixed p. 

Note: For a 7-law fluid, either of the variables a 
and c can be eliminated by use of the equation a = 
2c/(7-l). For a fluid with a non-7-law equation of 
state, neither a nor c varies exactly linearly with dis- 
tance across a plane simple rarefaction wave, but « 

varies more nearly linearly than c, hence Eq. (3.8) is 
the preferred form of the equations, inwhich c may 
be thought of as a function of a and S. 

As stated in the Introduction, we wish to use dis- 
sipative difference equations of second-order ac- 
curacy. An easy way of obtaining them is the Lax- 
Wendroff two-step method of differencing (Ref. 4, 
pp. 300-306). For equations of the form (3.7) we 
have, in the usual notation, 

Step 1: 

-Hi*" ("?.!-«;)♦ "5°. 
(3.9a) 

Step 2: 

u5+1 = u;-fi^(u;i*-u^)+At^s 

(3.9b) 

where the overbars denote the appropriate spatial 
averages of the matrix A and the vector g. In the 
code, the following minor modification of these 
equations is used: In the system (3.8), g appears 
only in the second equation and can be included by 
rewriting the last term of the first member of that 
equation (for a = 3) as 

c   3(R2u) 
W     3R 

3c 
3(R2u) 

This term is differenced as 

3c 
R2 

Ü21L 
»n+i   -   R2        nn+i 

R 
j-i 

in step 2, and in a similar way in step 1. Special 
treatment of points near the free surface, near the 
head of the rarefaction wave, and (after collapse) 
near the center and near the shock front is described 
in the following sections. 



IV. THE FREE-SURFACE CONDITION 

It is assumed that o-(R,t) and u(R,t) are smooth, 
for R > £(t), so that the entropy law (3/8t + u6/6R)S 
= 0 holds near the free surface. Then, for problems 
in which S is constant initially, & is constant 
throughout the flow until shocks form. (The present 
discussion needs modification for problems in which 
S ^ constant initially.) We set 

ff(R,t) = s£„ <rp(t)[R-£(t)]a+P, (4.1) 

u(R,t) = |(t) + 2* oUp(t) [R-|(t)]^+P , (4.2) 

where a and ß are positive constants to be deter- 
mined later. If we substitute (4.1) and (4.2) into 
(3.8b) and (3.8c), with 8S/9R = 0, then, writing only 
the lowest order terms and replacing the others by 
dots, we have 

ö0(R-sr + ••■ 

+ uo0o(a  + ^X*'5)6*"      +   •"   =   ••• 
(4.3) 

6  + ...+  üo(R-C)p   +...+U2B(R-5)'
P

   
X
  + ... 

+ ^ a*   o(R-e) 2a-l 
2        o 

(4.4) 

In order to achieve cancellation of the lowest order 
terms in (4.3), ß must be =1; then, the second and 
third terms indicated in (4.4) are of higher order, and 
to achieve cancellation of the first and fourth terms, 
« must be =1/2, and we find 

Y-l 
4 

0. 

With « = 1/2, (4.1) shows that (r2[ = <r(R,t)2] is a 
power series in R—£, starting with (r2(R—£); hence, 

e = Y-l 
4 

3(o2) 
3R (4.5) 

R=C 

That is the boundary condition at the free surface; it 
connects the inward acceleration of the free surface 
with the rate at which <r2 — 0 as the free surface is 
approached. In the code, 6(o-2)/8R is approximated 
by two difference quotients containing values of <r2 

at £ (where a2 = 0) and at nearby net points and is 

then extrapolated back to R = £. Equation (4.5) is 
implied by Eq. (3.6) of Ref. 7. 

When a has been calculated at all regular net 
points at time t = tn+1 by the method of Sec. HI, Eq. 
(4.5), for t = tn+1, contains two unknowns £n+1 and 
£n+1, because £n+1 enters into the approximation to 
9(<r2)/3R. That equation is solved, together with the 
two additional equations 

£n+1=£n+At/2(£n + £n+1) 

(4.6) 

£ tn+1 £n+l = ^n + At/2(£n + ^n+l) n+li 

for the unknowns £n+1, £n+1, and £n+1 by Newton's 
interative procedure. (Only one or two iterations are 
required at each time step.) 

It is easily verified that the boundary condition 
(4.5) at the free surface is satisfied by the self-similar 
solutions of the flow equations discussed in Sec. VII, 

| by virtue of the first equation of the pair (7.9). 
The free-surface boundary condition on the 

variable u has already been incorporated in (4.2); it 
is 

u(f,t) = £(t). (4.7) 

V.   FITTING THE HEAD OF THE WAVE AND 
THE FREE SURFACE 

The singularity at R = ?j(t) is of a very mild kind, 
and the only boundary condition or joining condition 
needed for the differential equations is the continui- 
ty of the function values. Rather little harm is done 
if this singularity is ignored completely in the 
calculation; the main effect of so doing is loss of the 
second-order accuracy of the finite difference 
equations for that interval that contains the front, at 
which the second derivatives are infinite. However, 
it is very easy to treat the singularity correctly, and 
to do so costs almost nothing computationally — it 
costs less than nothing in the present problem 
because it obviates the necessity of any com- 
putations whatever for R > r\(t). 

A portion of the computational net near the 
rarefaction head is shown in Fig. 5-1. Whenever the 
path of the rarefaction head is in either of the 
positions indicated as (a) and (b) in the figure, that 
is, lies to the right of a centered point like X2 but cuts 
through the net rectangle that contains that point, 
values of the flow quantities at X2 are obtained by 
the following special procedure in order that they 
may then be used in the regular Lax-Wendroff step 2 
to yield the values at the point indicated by the cir- 
cle on the line n +1: A special Lax-Wendroff step 1 is 
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Fig. 5-1. 
Treatment of the (mild) singularity at the head 
of the rarefaction. 

performed using the triangle indicated; it is the 
same as the normal Lax-Wendroff step 1 except that 
the base of the triangle has been reduced from AR to 
7?(tn)-Rj. This step gives values of the flow quan- 
tities at the tip of the triangle; they are then ob- 
tained at X2 by quadratic interpolation on R using 
also the known values at xi and at the rarefaction 
head itself. 

If the head lies in a position like (b), new values of 
the flow quantities are needed also at the net point 
j + 1 that has just been uncovered by the motion of 
the head; those values are obtained by linear or 
quadratic interpolation on R at time tn+1. 

The procedure for determiniing the flow quantities 
near the free surface is similar, once the motion of 
the free surface is known. The sequence is: The 
modified Lax-Wendroff step 1 uses the old position 
£(tn) of the free surface; the interpolation at tn+1'2 

uses an extrapolated value of £(tn+1'2); the Lax- 
Wendroff step 2 can then be performed at all or- 
dinary net points, and therefrom the final position 
£(tn+1) of the free surface is determined as described 
in the preceding section, followed by interpolation of 
the flow quantities, at tn+1, if needed for an 
uncovered net point. 

VI. SOME NUMERICAL RESULTS FOR THE 
RAREFACTION PHASE PRIOR TO 
COLLAPSE 

Several calculations were made, for y = 3.0, using 
the methods described in the three preceding sec- 
tions. Curves of c vs R at four values of t are given, 
for a calculation in which AR was = 0.02, in Fig. 6-1. 
Except where shown, the calculated points lie on the 
curves drawn within the accuracy of the drawing. 
The steepening of the gradient at the free surface, 
which causes the inward acceleration, is clearly visi- 
ble. 

Fig. 6-1. 
Progress of the cavity collapse wave, for y = 3. 
Except for those shown, calculated points are 
within the curves as drawn. 

As a provisional measure of overall accuracy, the 
total energy, kinetic plus internal, of the fluid 
between R = £(t) and R = ??(t) was computed and 
compared with the initial energy. 
[W3(»?3-£3)po/Y-l] of that same fluid. The 
percentage errors are given in Table I (together with 
the corresponding errors for a calculation with AR = 
0.0025). A comparison calculation was made with 
the standard Eulerian equations, with no fitting or 
boundary condition on the free surface, but with the 
cavity initially filled, as is often done, with fluid at a 
very low density and pressure (= 2X10-4 and 
8X10-12, in units of the initial density and pressure 
outside the cavity). Comparison of the second and 
third columns of the table shows that, by this par- 
ticular measure of the accuracy, the errors are reduc- 
ed by a factor 50-200 by the methods described in the 
preceding sections. Most of the improvement results 
from the proper treatment of the free surface; the 
special choice of dependent variables given in Sec. 
Ill gives only an additional improvement by a factor 
2-3. 

VII. SOME SELF-SIMILAR SOLUTIONS OF 
THE BOUNDARY-VALUE PROBLEM 

If the initial conditions at t = 0 are ignored, one 
has a boundary-value problem consisting of the par- 
tial differential equations (3.8) for R > £(t) together 
with the free-surface condition at R = £(t). For a y- 
law fluid, for which a and c differ merely by a 
numerical constant, that problem contains no 
characteristic length or time, hence is likely to have 
self-similar solutions, i.e., solutions such that the 
functions of R obtained at any distinct instants ti 
and \>i become identical if all lengths, velocities, and 
other quantities are suitably rescaled between the 
two instants. (Such solutions can be obtained by 
solving ordinary differential equations, as shown 
below.) In the literature, one often sees arguments 
claiming to show that the solution of the full initial 
boundary-value  problem,  though not self-similar 



TABLE I 

ERROR OF TOTAL ENERGY OF RAREFACTION FAN 

Y = 3.0 

Comparison Calculation: 
Eulerian Variables, No Riemannian Variables, 
Free -Surface Fitting 

AR = 0.02 

Free-Surface Fitting 

Time AR = 0.02 

0.22% 

AR = 0.0025 

t = 0.0846 
0.1401 6.99% 
0.1646 0.13% 
0.1993 
0.2302 

7.29% 
0.016% 

0.2399 0.10% 
0.3097 0.075% 
0.3104 
0.3495 

6.93% 
0.008% 

0.3726 0.64% 
0.4254 
0.4550 

0.39% 
0.018% 

0.4657 0.033% 
0.4923 0.035% 
0.5009 6.00% 

(the initial conditions introduce a characteristic 
length Ro), is asymptotically self-similar near 
collapse, i.e., for to-t « t0 and R « R0. Although we 
feel there is reason to doubt the general validity of 
those arguments, we have investigated the self- 
similar solutions of the boundary-value problem, 
and we have attempted to examine numerically the 
solution of the full problem asymptotically near 
collapse to see whether it has a similarity property. 
The results so far are inconclusive, but further work 
is planned. The goal of such work is to be able to 
patch together numerical calculations just before 
and just after collapse by solutions obtained from 
the similarity theory. 

For application to the cavity-collapse problem, 
the class of self-similar solutions is further restricted 
by the assumption of isentropy, which introduces a 
characteristic constant entropy S0. (That is to be 
contrasted with the assumption made in the 
Guderley-Butler shock-collapse problem, in which 
there is a characteristic constant density p„ — the 
density of the stationary fluid into which the collap- 
sing shock is running. The two sets of assumptions 
are contrasted in Table II — they lead to different 
systems of ordinary differential equations.) 

The similarity assumptions are these: First, there 
are positive constants A and 5 such that the position 
of the free surface is given by 

e(t) A(tQ-t)' (7.1) 

In the discussion of the self-similar solutions, t0 

could be taken =0, but we retain the notation of the 
preceding sections in the interest of returning later 
to the full initial boundary-value problem.) Then, a 
dimensionless variable r? is defined: 

A(Vt)< 
(7.2) 

the region of interest is TJ > 1; TJ = 1 corresponds to 
the free surface. It is then assumed that the depen- 
dent variables depend on R and t only through TJ, 

after suitable scaling. 
The dependent variables could be chosen as a and 

u, or as c and u, since, for a 7-law fluid, a and c differ 
merely by a constant. We make the latter choice, in 
conformity with most of the literature. Since c and u 
have the dimensions of velocity, they can be written 
as 

c(R,T)=RC(u)/(T„-t) = A(t0-t)d-17)C(r)) 
(7.3) 

u(R,t)=RV(r,)/(t()-t)    =    A(t„-t)d-1t?V(77), 

where C and V are dimensionless functions, called 
the reduced sound and material speeds. When^the 
expressions (7.3) are substituted into (3.8), with S = 
const, the explicit dependence on R and t cancels 
out, and the following system of ordinary differential 
equations is obtained: 



TABLE II 

SIMILARITY ASSUMPTIONS 

R „ =  _ 
A(to-t) 

Collapsing Shock 
(Guderley, Butler, etc.) 

c = A(to-t)
6"1C(n) 

u = A(to-t)
6"1V(n) 

Collapsing Cavity 
(Hunter, Clarke, etc.) 

c = A(to-t)
6_1C(n) 

u = A(to-t)
6'1V(n) 

P = P(n) 1Ü [e.g., P(D = ^TP0] 
s = S(n) 

(In fact, s is independent 
of both R and t until 
collapse.) 

Consequence: 

s = A2(to-t)
26"2S(n) 

Consequence: 

2 ,6-1 

AY_1(to-t)  Y  l  P(n) 

iC   +  C 

Y-l (ö-l){(V+6)C  -   iji cv>   "   (Y-1)(V+5)CV 

nV   +  V 

where 

(6-l){(V+«)V  -  -rj-C2}  +  2C2V 

A = A(C,V) = (V+5)2-C2. 

(7.4) 

(7.5) 

It is noted that the quantity of dC/dV = C '/V' is a 
function of C and V and does not depend explicitly 
on 77. An ordinary differential equation system of the 
general form (7.4) having that property is called 
autonomous; it has the advantage for interpretation 
and presentation of the solutions that a solution 
curve in the three-dimensional space C,V,T? is uni- 
quely determined by its projection on the C,V plane. 
(Even the explicit appearance of t) in the left 
members of (7.4) can be eliminated by taking T = log 
77 as the independent variable.) 

It should be noted that the autonomous property 
of (7.4) follows from the particular substitution (7.3) 
and. does not follow, for example, from the dimen- 

sionally equivalent substitution c(R,t) = £CI(TJ), 

u(R,t) = |VI(J?). The possibility of putting#the 
equations into autonomous form is a consequence of 
the dimensional properties of the fluid-dynamical 

I equations and can be seen as follows: First, we take 
A=l and to=0 in this paragraph, so that 77 = 
R(-t)-5. We write 

£^}=  nc[n),  V(n),   n). (7-6) 

Let a be any positive constant, and let b = a " . 
Now, 

£-£!£}-  *(C(bn), V(bn), bn)   .        (7.7) 

On the other hand, for S = const, it is seen that if 
c(R,t) and u(R,t) satisfy (3.8), then the functions 

c(R,t) = c(aR,at) 

ü(R,t) = u(aR,at) 

also satisfy (3.8), hence the functions 

C(n) ((-at)0 C(bn) 
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V(n) vfe) = v(bn: 

also satisfy (7.6); that is, 

HS =  HC(bn),  V(bn),Ti). 

Since b is arbitrary (if 5^1), comparison with (7.7) 
shows that ~i> does not depend explicity on rj. (The 
argument must be modified for 5 = 1.) 

Eouation (7.4) can be written as 

nC(n)  = 

nV'(n) 

ICC, 
rtcT XI 

v) 
(7.8) 

rtcTvy 

where F and G, like A, are simply polynomials in C 
and V. The boundary conditions at the free surface 
{r) = 1) are 

C(l) = 0 (from vanishing pressure), 

V(l) -<5 (from u=£ at R = £). (7.9) 

The boundary conditions for TJ—°° are discussed 
below. 

In principle, the system (7.8) can be integrated by 
Runge-Kutta with (7.9) as starting values. However, 
there is a difficulty that the point with C and V given 
by (7.9) is a critical point, i.e., a point where the 
polynomials F, G, and A all vanish. A standard 
analysis shows that, near the critical point, V has the 
form of a power series in 77 — 1, while C has the form 
VTj-1 times a power series. For that and other 
reasons, the numerical work was done with functions 
q(?7) and v(rj) given by 

l(n)   = 7^T7==r C(n) 
n-l 

(7.10) 

v(n)   =   nV(n) 

(then, the system no longer has the autonomous 
form), but the results will be described in the C,V 
plane. The complete set of critical points is describ- 
ed below and in Fig. 7-1. 

The boundary conditions for 77—00 come from the 
requirement that c(R,t) and u(R,t) have definite 
limiting values, as t — t0 for fixed R, i.e., as 77 — 00. 

From the definition (7.2) of 77, it is seen that (7.3) can 
be rewritten as 

/ \1/6 

-1/6, c(R,t)   = I,—=Tf  I      R'  i/üC(n) 

-   (An^V-^COO 

u(R,t) 

(An^'V-^VCn) 

Hence, as TJ —> °°, 

C(JJ),V(»7) -,-!/*. (7.11) 

Examination of (7.4) shows that if C and V —> 0, as 77 
—> oo, then they behave asymptotically according to 
(7.11); hence the boundary condition is that C and V 
- 0. 

For most values of 7 and 5 in the relevant ranges, 
the system (7.4) has nine critical points, of which six 
are shown in Fig. 7-1 for 7 = 3, 5 = 0.7 and the 
remaining three are obtained by reflection in the V 
axis. For the general classification of critical points, 
the reader is referred to Birkhoff and Rota,8 p. 130 ff. 
A little algebra shows that, in the present problem, if 
either F or G vanishes along with A, then the other 
vanishes too. That simplfies locating and classifying 
the critical points. 

Factorization of the denominator A(C,V), (7.5), of 
the expressions (7.8) shows that, along any solution 
curve in the C,V plane, the direction of change of 77 
reverses, as the curve crosses either of the lines V+5 
= ±C, one of which is shown dashed in Fig. 7-1, un- 
less F and G also vanish at the same time. According 

* 
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-0.8 -0.6        -0.1 -0.2 
V 

Fig. 7-1. 
Critical points of C = C(V) in the upper half- 
plane, for 7 = 3. 



to the boundary condition given above, the solution 
curve starts from the saddle point B in an upward 
direction and terminates, for r\ —> oo, at the star point 
F; hence, in order that C and V be single-valued 
functions of rj, the curve must cross the dashed line 
either at the node E or the node C. Numerical in- 
tegration with third-order Runge-Kutta for various 
values of 5 shows that, when a complete solution is 
obtained at all, it goes through point C, not E.* 

The situation is in marked contrast with that for 
the corresponding collapsing shock problem studied 
by Guderley and Butler, where the point correspon- 
ding to C is a saddle point, instead of a node. 
(Qualification is necessary, because our studies have 
been made for 7 = 3.0, while those of Guderley and 
Butler were for 1 < 7 < 2; detailed studies of both 
problems for general 7 will be presented elsewhere.) 
In the case of a node, all solution curves that come 
reasonably close are drawn into the node, and all, 
with one exception, pass through it in the direction 
indicated by the letter "p" (for "primary") in Fig. 7- 
1; the one exception takes the direction "s" (for 
"secondary"); whereas, in the case of a saddle point, 
only the curve that is aimed in precisely the right 
way passes through the point at all; all other 
solutions deviate either to the right or to the left. 
Consequently, in order to get a solution at all, for the 
collapsing shock problem, the value of 5 has to be 
precisely chosen, whereas there is range of admissi- 
ble 5's for the collapsing cavity problem. In either 
case, once the dashed line has been crossed, the solu- 
tion is drawn automatically to the star point F at the 
origin, and the terminal boundary condition is 
satisfied. 

The results described from now on are all for 
7 = 3.0. 

For 5 in the interval 0.666667 < 8 < 0.708542, the 
solution curve arrives at the node C along the 
primary direction, but there are many curves leaving 
C to the right: one starting in the secondary direc- 
tion, as seen most clearly in Fig. 7-2, for 8 = 0.68, 
and a one-parameter family of curves starting in the 
primary direction, as illustrated by the upper three 
curves of Fig. 7-3, for 8 = 0.70. (The arrows indicate 
the direction in which the curves were calculated; in 
particular,   the  lowest  one  was  calculated  both 

0.4 

*At least for 7=3. For the collapsing shock problem 
(to be published), the situation reverses at a critical 
value of 7 (near 1.9, but different for cylindrical and 
spherical geometry). It remains to be investigated 
whether the same is true for the collapsing cavity 
problem, and, if so, whether the critical values of 7 
are the same. 

0.3 

'0.2 

0.1 

T r 

«MUNITY MUITI0N 

r* sot-am 

Fig. 7-2. 
A similarity solution for 8 = 0.68, 7 = 3. 

forward and backward, by reversing the sign of AT? in 
the Runge-Kutta method; the direction of increase 
of n is from left to right along all the curves.) The 
curves of the one-parameter family (for given 8) pass 
through C with change of direction, but generally 
without discontinuity of higher derivatives. 

In the special case 5 = 0.708542, the curve comes 
to C alorig the secondary direction and, if continued 
so as to leave in the same direction, passes through C 
with continuity of all derivatives and in fact 
analytically. For certain special values 8 in 
(0.666667, 0.708542), one curve of the one-parameter 
family referred to is also analytic at C. That appears 
to be a rather intricate Diophantine affair and is dis- 
cussed in detail by Hunter,6 who, however, rejects 
those solutions for reasons that are rather hard to 
follow. 

An argument given by Hunter claims to show that 
only those solutions analytic at C can appear asymp- 
totically in a physical problem. That argument 
seems doubtful to us for the following reason: In the 
first place, any of the curves in the C,V plane dis- 
cussed above, including those of the two-parameter 
family (where 8 is now regarded as the second 
parameter) lead to an acceptable solution of the par- 
tial  differential  equations of fluid dynamics,  by 

C0.2 - 

Fig. 7-3. 
Some of the similarity solutions for 8 = 0.70, 7 
= 3. 
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P(R ■V =   p   R «(Y-D 

P(R, V =  p   U 
oo 

2Y(1-6) 

(8.1) 

The infinite pressure gradient at R = 0 starts an out- 
going shock, and we look for a self-similar solution 
for that shock and the flow behind it. The problem 
was considered by Hunter,6 but only in the 
isentropic approximation. 

As in Sec. VII, the flow quantities are written as 
functions of a similarity variable, each multiplied by 
a power of t - t0. As similarity variable, we choose 

n  = e n 
A(t-tQ) 

(8.2) 

means of Eqs. (7.2) and (7.3). Since the fluid- 
dynamical equations are hyberbolic, there is no re- 
quirement of analyticity; in fact, jumps of the 
various derivatives of the flow quantities can be 
propagated along the characteristics; the first 
derivatives are discontinuous at the head of a 
rarefaction wave, and the functions themselves can 
be discontinuous for a weak solution. Now, the solu- 
tion of the full initial boundary-value problem of the 
cavity-collapse problem is indeed analytic; it can be 
shown (again by consideration of the 
characteristics), but it does not follow that the self- 
similar solution to which it converges must be 
analytic. 

If 7j0 is the value of n at the node C, then the curve 
7j = rjo in the R,t plane, namely the curve 

R = A7jo(T0-t)8, 

is characteristic; it is the path of an incoming 
spherical sound wave that just catches up with the 
free surface at collapse. For determining how the free 
surface itself collapses, nothing outside that sound 
wave has any influence, hence the part of the solu- 
tion curve to the right of the dashed line in the 
figures has no effect, until after collapse. 

The properties of the critical point C as a function 
of 8 in (0,1) (still for y = 3.0) can now be sum- 
marized. (It always lies on the dashed line in the 
figures.) For 0.708542 < 0.711405, the solution curve 
comes to C along the primary direction from above 
and to the right and crosses the dashed line first, 
hence is unacceptable. For 5 > 0.711405, C is a spiral 
point, hence again the solution curve crosses the 
dashed line (in fact infinitely often) before arriving 
at C. For 5 < 0.666667, the point C disappears (it 
merges with F, then becomes complex, as 5 
decreases). Hence, we are left with the interval 
(0.666667, 0.708542). 

VIII. THE SIMILARITY SOLUTION AFTER 
COLLAPSE; THE OUTGOING SHOCK 

At the instant of collapse (t = t0), according to 
(7 8) and the equations just preceding it and the      for t > fc>. The functions C, V, and S can have jumps 
relations p = spy, c2 = Tp/p. the flow quantities vary      at the point r, = v * where the shock occurs. (Note 
as inverse powers of R, namely, that c and C have opposite signs, as do u and V; that 

is unfortunate, but it obviated recoding some ot the 
computer programs.) 

In the similarity variables, the entropy equation 

(This choice makes fi real, for t > t0. Since only log r\ 
appears in the ordinary differential equations, the 
extra factor e~M is irrelevant.) The flow ahead of 
the shock, for t > t0, is simply the smooth 
continuation of the flow found in Sec. VII; hence, the 
value of 8 has to be the same as in that section, to 
give the same behavior (8.1) for t = t0. It then follows 
that the power of t - t0 appearing in each flow 
quantity must be the same as in Sec. VII, because 
the compression ratio P2//01 across the shock, the 
corresponding pressure ratio P2/P1, velocity ratio 
u2/ui, and "entropy" ratio s2/si (where s = pp~7), 
and so on, are all independent of t for a self-similar 
solution. Therefore, we write [compare with (7.3)]: 

c(R,t)  = ^CCfi)  =  -ACt-t^^nCCn), 

u(R,t)   = ^VCfi)   =   -Alt-t^'^VCn)   . 

s(R,t) =   S(n) (8.3) 

1-6 

c(R,t  )   =  c     R o   .       00 

u(R,t0)   -  uoR 

1-6 
6 

Li 
at + u 3 S 

3~T* 
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takes the form 

[8+V(r,)]S'(r,)=0. 

It can be shown that V(t) ) cannot be = -8. In fact, 
V(T}) cannot be = -5 immediately behind the shock, 
at 7? = v *, no matter what value fj * has; that follows 
from the numerical values of the self-similar solution 
already obtained for the flow ahead and the 
Rankine-Hugoniot shock conditions. Therefore, S'(?) 
= 0, and s(R,t) has a constant value S2 in the flow 
behind the shock, which is, of course, not necesarily 
equal to the constant value si (= 1 in Sec. VII) ahead 
of the shock; in fact, s2 > si because a shock always 
increases the entropy. 

Since the entropy is constant, the ordinary 
differential equations (7.4) and (7.8) hold also 
behind the shock. In Fig. 10-4, two solution curves 
are shown in the C,V plane: the curve C, consisting 
of the parts Ci, C2, and C3, which describe the flow 
ahead of the shock, and the curve C, which 
describes the flow behind it. The shock is a jump 
from a point P0 on the first curve to a point PÖ on the 
second. 

The boundary conditions at rj = 0 for the curve C' 
come from conditions at the center of the system. 
For R = 0, the velocity u vanishes by symmetry, 
while the sound speed c assumes a positive value. 
Hence, by (7.3), V(0) is finite, while CO7) — °°, as v 
— 0. By letting C(TJ) -> °° in the second differential 
equation (7.4), we find that 

V(0)= -2(1-5)/3(T-1) (8.4) 

That suffices to start the curve C at very small 7?, 
hence very large negative C(T} ). 

Let T) be so normalized on C (it can be multiplied 
by an arbitrary constant), that it has the value TJ * at 
P'. Then, the constant A in (8.2) has the same value 
on both curves, because the coordinate R of the 
shock is the same when viewed from in front of the 
shock or behind it; the shock's position is 

Rsh = AJ)*(t-to)5, 

and its speed is 

R,h =5AJ?*(t-to)s_1. (8.5) 

For the Rankine-Hugoniot jump conditions across 
the shock, let subscripts 1 and 2 denote values just 
before and just behind the shock, respectively. The 
conditions are 

(RslTul)pl =   (Rsh-Vp2 V -L-.L     ' 
pl     p2 

(8.6) 

¥ = *H4. wh 
Pi 8    -    X 

ere x Y  + 1 
Y  -   1   • 

(8.7) 

In the similarity variables, these equations take the 
form 

Y*, 

-%TTT ' where  *c 

(Vj  + «)' 
Y   =    =r—■—=-   ,   wuei'B   ip      -    f x 64+0+1 O n1 

O Li 

C2  "  Cl 
/   ex - 1 

Y (e- x)) 

vx + 6 

(8.8) 

(8.9) 

(8.10) 

The numerical procedure for locating the jump is 
this: For each point P on C3 (where Ci and Vi are 
known), C2 and V2 are determined from these 
equations as target values to be attained by the 
jump, if the jump were to occur at point P. Then, for 
each P' on C\ the value V2 of V at P' fixes the point 
P on C3 from which the jump would have to start; P' 
is moved along C (upward in the figure) and P cor- 
respondingly along C3, until condition (8.9) is also 
satisfied; r) * is then the value of 7) at the point P on 
C3, and the shock is completely determined. 

Each of the solutions, for t < t0, of the two- 
parameter family discussed in Sec. VII can be com- 
pleted for t > t„, in the way described here, by a self- 
similar solution containing an emerging shock. An 
example is shown in Fig. 10-4. 

IX. THE FLUID-DYNAMICAL EQUATIONS 
IN SIMILARITY VARIABLES 

To follow the motion of the free surface and the 
fluid just behind it near collapse, a special com- 
putational net and a special set of difference 
equations are used for the region t ~ t0, R ~ 0. The 
independent variables are 7/ and t, instead of R and t, 
where 

r? = R/£(t), (9.1) 
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£(t) being the position of the free surface, as deter- 
mined by the calculation itself. Relative to the R 
grid, the r] grid represents a moving and shrinking 
frame of reference. The two calculations are coupled 
by interpolation at intermediate radii, and the whole 
is called similarity-fitting. The dependent variables 
are Q(r;,t) and V(v,t) and are related to the Reimann 
variable a and the fluid speed u by the equations 

<r(R,t) = £(tK 

u(R,t) = |'(t)V(u,t) (9.2) 

The factors £(t) are included to make Q and V 
dimensionless. {Note 1: It would have been more 
reasonable to include a minus sign in those 
definitions, because £ < 0, but that was not done. 
Note 2: The entropy equation was also carried along 
in the calculation, but vacuously, because only the 
isentropic case was computed.) 

The partial differential equations result from sub- 
stituting (9.2) into (3.8) and dropping the terms in S; 
they are: 

Q + I Q + I  [(v-n) 

CQ    + 2(n-l)} 2 
Q -V(n2V)']  = 0 

n 

V + % V +  |[(V-n)V 

+ I^i Q{(n-DQ'  + ^H 
(9.3) 

where the dot denotes 9/6t and the prime ö/8TJ. The 
system is of the form (3.7) and was differenced by 
the Lax-Wendroff two-step procedure (3.9). 

If the flow is asymptotically self-similar, then 
Q(»j,t) and V(r;,t) should become independent oft, as 
t-t,. 

The free-surface boundary conditions come from 
(4.5) and (4.7); they are 

5  = 

V  =   1 

Y-l   C 

at  n (9.4) 

Note: The symbol V is used differently here and in 
Sec. VII. To get the quantities C and V ofthat sec- 
tion, the present quantities \/rj-\ Q and V must be 
multiplied by d/rj. 

A consequence of the transformation (9.2) of the 
dependent variables is that, whereas a and u were 
both known in advance at the free surface for the R 
grid (in particular, a = 0), Q is now unknown there, 
and an additional equation is needed; it is obtained 
by setting r; = 1, V = 1 in the first equation of (9.3) 
and evaluating (V - TJ)/(TJ - 1) by L'Hopital's rule 
[setting 7j = 1, V = 1 in the second equation of (9.3) 
merely gives the first of (9.4) again]. We find 

Q + £ Q + | % IY(V 2)   -   3] 

This equation is used (in effect as a special step 2 of 
the Lax-Wendroff) to advance Q in time at TJ = 1. 
The derivative V is obtained at tn+1/2 from the 
results of step 1 at J? - 1 = ATJ/2 and 3A??/2, together 
with the value V = 1 at TJ = 1, by differencing the ex- 
trapolation. Since Q' has disappeared, the above 
equation is not coupled to the equations for advan- 
cing Q at the regular net points ij - 1 = kA»j (k = 
1,2...). A more careful treatment provides such 
coupling. Instead of merely evaluating the differen- 
tial equation at r; = 1, we average it over the interval 
(1,1 + AT?) with a weight that decreases linearly from 
1 to 0 across the interval. (The corresponding effect 
is achieved in the normal Lax-Wendroff by the 
averaging that takes place in step 1.) Then, the 
above equation has an extra term and takes the 
following form: 

Q + f Q + |  {§[Y(V+2)-3]   + y(V1-n1)Q'} =  0, 

(9.5) 

where m = 1+A77 and Vi = V(»?i). Since the last term 
is of smaller order than the others, it is adequate to 
evaluate Q' to first order from the values at tn. 

The application of (9.4) and (9.5) is similar to the 
fitting procedure at the free surface described for the 
R net in Sees. IV and V, but with the following 
differences: (a) there is no need for a special Lax- 
Wendroff step 1, because the free surface is always at 
the net point k = 0; (b) after step 1 at k = 1/2,3/2,... 
and the approximation to £, £, and £ at tn+1/2 that 
result therefrom, and after the regular step 2 at k = 
1,2,..., Eq. (9.5) is then used to advance Q atr; = 1 as 
described above, and the values of £, £ and £ at tn+1 

are obtained from (9.4); (c) there is no need for inter- 
polations at tn+1, because no points of the r\ net are 
uncovered by the motion of the free surface. 

When the method of this section is combined with 
that of Sec. Ill, involving a standard R - t net, and 
the two calculations are coupled by mutual inter- 
polations  at intermediate radii,  the  effect is to 
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provide a refinement of the R — t net near t = t0, R = 
0, the degree of refinement increasing without limit 
as collapse is approached. The overall procedure is 
called zooming, to borrow a term from photography. 

The resulting algorithm was tested by a calcula- 
tion in which the initial values of Q and V were 
taken, for an interval 1 = ?j0 ^ »? ^ Vk (= 2.0 or 5.0), 
from the similarity theory of Sec. VII, for 5 = 
0.708542. The computed Q and V were very nearly 
independent of t over a very large number of cycles, 
as they ought to be, while £(t) and £(t) varied as 
shown in the log-log plot of Fig. 9-1. It is seen that 
the values lie on a straight line with slope -(1 - d)/6, 
as they should. 

For r\ > ?JC (rjc is the value of »7 at the critical point 
through which the solution of the ordinary differen- 
tial equation passes; TJC = 1.22195 for 5 = 0.708542), 
both characteristics of the system (9.3) slope to the 
right; they both represent signals moving away from 
the region near the free surface. One consequence is 
that in the test calculation just referred to, one must 
not impose a boundary condition at r\ = tjkl the 
boundary value must float freely with the solution of 
the differential equation. To achieve that, we 
calculated the boundary values by one step of the so- 
called Courant-Isaacson-Rees method, which con- 
sists of writing the equation in characteristic form, 
following each characteristic back from r\ = r\Y, t = 
tn+1 to a point between ?jk-i and r\\ at t = tn, 
obtaining a value of the Riemann invariant at that 
point by linear interpolation on r\, and then using 
that value of the invariant at %, tn+1. 

1 1 1 

CALCULATION OF 6/IO/73 
WMIOATA TROM SIMILARITY 
THEORY FOR »«0.7085*2 
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Fig. 9-1. 
Agreement  of the solution of the partial 
differential equations with the similarity solu- 
tion,'when the initial data are taken from the 
similarity solution. 

X. THE ASYMPTOTIC BEHAVIOR OF THE 
CAVITY-COLLAPSE PROBLEM 

In view of the large number (in fact, two- 
parameter family) of self-similar solutions found in 
Sees. VII and VIII, the question arises, to which of 
them the solution of the full cavity-collapse problem 
is asymptotic, and indeed whether the solution of 
that problem is asymptotically self-similar at all. 
The same questions arise about other problems of 
cavity collapse, such as ones in which the fluid is in- 
itially moving inward, ones with spherical layers of 
different material, and so on. To begin investigating 
those questions, a few calculations have been made 
with the zooming method described in the preceding 
section, for the present problem as described in Sec. 
II. One such calculation, for 7 = 3.0, which used 400 
points in the R net and 700 in the 77 net, will now be 
briefly analyzed, and will be referred to simply as 
the full calculation. 

One method, in principle, for testing the asymp- 
totic self-similarity of the solution obtained by the 
full calculation is to plot £ log-log vs £; the graph 
should be asymptotically a straight line with slope 
—(1—b)/b. If the solution were truly self-similar, that 
would be as good as any other method of test. In 
practice, it is unsatisfactory, because, as stated in 
Sees. VII and IX, the motion ofthat part of the fluid 
corresponding to the interval (l,7jc) of the variable rj, 
a part having vanishing mass in the limit t = t0, is 
unaffected by the motion of all the fluid outside, un- 
til after collapse; hence, its motion is not necessarily 
representative of that of the bulk of the fluid. The 
log-log plot of £ vs £ is given in Fig. 10-1, and it is 
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Fig. 10-1. 
Weak approach of £ vs £, from solution of the 
partial differential equations, to the similarity 
solution. 
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seen that the self-similar property is established, at 
best, only late in the flow. A much better method is 
the following. 

If the solution is assumed to be asymptotically 
self-similar, then, for t sufficiently near t0 and for an 
interval (Ri ,Ra) of the radial coordinate R such that 

£(t)«Ri,R2«>7(t), (10.1) 

the flow variables ought to be approximately equal 
to certain inverse powers of R, as given by (8.1). To 
test that assumption, -u is plotted logarithmically 
against R for two values of t in Figs. 10-2 and 10-3. 
The values were obtained from the full calculation; 
some of the points are from the R net and some from 
the v net. The values of £(t) are 0.00960 and 0.00299 
for the two cases, and the rarefaction head is at 7j(t) 
« 2.0. It is seen that, at intermediate radii, the 
points lie approximately on a straight line, whose 
slope can be estimated graphically to slightly better 
than 1%. In this way, empirical values 0.684 and 
0.686 of 5 were obtained for the two cases. 

Clearly, a much more detailed study will be re- 
quired to establish whether the solution is asymp- 
totically self-similar. 

Even if the value 5 = 0.685 is accepted, a choice 
must still be made among the one-parameter family 
of self-similar solutions indicated schematically (for 
5 = 0.70) in Fig. 7-3, before the outgoing shock can 
be started by the similarity method of Sec. VIII. It is 
evident from Fig. 7-3 that the choice must be based 
on the ratio C/V for large rj, i.e., for R in the interval 
(Ri.Rs) given by (10.1). The full calculation gives 
C/V « 1.0, which corresponds to the lowest curve of 
Fig. 7-3, the one that emerges from the nodal point 
along the secondary direction. With that choice, for 5 
= 0.685, the complete similarity solution for the flow 
both before and after collapse is given in Fig. 10-4, 
obtained by the methods of Sees. VII and VIII. 
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Fig. 10-2. 
Approach of u(R) from solution of the partial 
differential equations to the similarity solu- 
tion, using the discontinuous initial data, when 
the free surface is at 0.01. 
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Fig. 10-3. 
With the free surface at 0.003. 

In that way, it is tentatively concluded that the 
outgoing shock travels with a speed « 1.484 times 
the speed of the incoming free surface, at a given 
radius, has Mach number « 1.783, compression ratio 
tolpi « 1.518, and "entropy" ratio s2/si, « 1.212. It 
can in principle then be followed at later times by 
the shock-fitting methods of Ref. 3, although that 
has not yet been done for the present problem. 
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Fig.   10-4. 
V,C plane display of an entire similarity solu- 
tion, for ft = 0.685, 7 = 3. 
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XI. CONCLUSIONS 

Satisfactory numerical methods have been 
developed for handling singularities of the first three 
kinds listed in Sec. II, namely the free surface, the 
rarefaction head, and the region in between at early 
times. The methods are described in Sees. EI-V and 
were shown to give about two orders of magnitude 
greater accuracy than a comparison calculation by 
conventional methods. The methods that have been 
developed for singularities of the fourth and fifth 
kind, namely the cavity collapse at late times and 
the emergent shock at early times, are described in 
Sees. VII-X; they are somewhat less satisfactory 
from a theoretical point of view, owing to unresolved 
questions whether the solution is asymptotically 
self-similar, and, if so, what the values of the ap- 
propriate parameters are. 

A method of testing the asymptotic self-similarity 
of the solution of the full problem is given, which is 
superior to the perhaps more obvious method of a 
log-log plot of £ vs £. 

The similarity theory has been developed in some 
detail. The present work goes beyond that of 
Hunter6 in that the entropy increase at the shock is 
taken into account. It is shown that there is a two- 
parameter family of self-similar solutions that con- 
trasts with the collapsing shock problem of 
Guderley9 and Butler,10 in which there is only one. 
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